Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Terrestrial cosmogenic nuclides (TCN) are widely employed to infer denudation rates in mountainous landscapes. The calculation of an inferred denudation rate (Dinf) from TCN concentrations is typically performed under the assumptions that denudation rates were steady during TCN accumulation and that soil chemical weathering negligibly impacted soil mineral abundances. In many landscapes, however, denudation rates were not steady and soil composition was significantly impacted by chemical weathering, which complicates interpretation of TCN concentrations. We present a landscape evolution model that computes transient changes in topography, soil thickness, soil mineralogy, and soil TCN concentrations. We used this model to investigate TCN responses in transient landscapes by imposing idealized perturbations in tectonically (rock uplift rate) and climatically sensitive parameters (soil production efficiency, hillslope transport efficiency, and mineral dissolution rate) on initially steady‐state landscapes. These experiments revealed key insights about TCN responses in transient landscapes. (a) Accounting for soil chemical erosion is necessary to accurately calculateDinf. (b) Responses ofDinfto tectonic perturbations differ from those to climatic perturbations, suggesting that spatial and temporal patterns inDinfare signatures of perturbation type and magnitude. (c) If soil chemical erosion is accounted for, basin‐averagedDinfinferred from TCN in stream sediment closely tracks actual basin‐averaged denudation rate, showing thatDinfis a reasonable proxy for actual denudation rate, even in many transient landscapes. (d) Response times ofDinfto perturbations increase with hillslope length, implying that response times should be sensitive to the climatic, biological, and lithologic processes that control hillslope length.more » « less
-
Abstract Environmental monitoring and long-term research produce detailed understanding, but its collective effort does not add up to ‘the environment’ and therefore may be difficult to relate to. Local knowledge, by contrast, is multifaceted and relational and therefore can help ground and complement scientific knowledge to reach a more complete and holistic understanding of the environment and changes therein. Today’s societies, however, are increasingly fleeting, with mobility potentially undermining the opportunity to generate rich community knowledge. Here we perform a case study of High Arctic Svalbard, a climate change and environmental science hotspot, using a range of community science methods, including a Maptionnaire survey, focus groups, interviews and cognitive mapping. We show that rich local knowledge on Svalbard could indeed be gathered through community science methods, despite a high level of transience of the local population. These insights complement environmental monitoring and enhance its local relevance. Complex understanding of Svalbard’s ecosystems by the transient local community arose because of strong place attachment, enabling environmental knowledge generation during work and play. We conclude that transience does not necessarily prevent the generation of valuable local knowledge that can enrich and provide connection to scientific understanding of the environment.more » « less
-
The current work studies the correlations between microstructure and retained austenite (RA) transformation, in a single-quenched and partitioned (Q&P) 1180 steel microstructure, through in situ tensile tests combined with electron backscatter diffraction (EBSD) analysis. This allows the study of RA stability across a limited range of morphological characteristics to be studied in the absence of confounding factors introduced by varying the entire steel microstructure. Among the microstructural attributes of interest, RA grain aspect ratio is found to have the largest influence on transformation rate, where globular-shaped grains transform more slowly than those with a more lenticular shape. Furthermore, by tracking individual grains during deformation, it is apparent that larger grains transformed more slowly than smaller grains; a purely statistical study of grain size vs strain might conclude that smaller grains are more stable, but in reality, the smaller grains transform faster and are simply statistically replaced by partially transformed larger grains. These conclusions are in contrast to relationships that might be inferred from previous studies where the entire steel microstructure was varied, along with the morphology of the RA.more » « less
-
We present the results of a theoretical investigation of the stability and collective vibrations of a two-dimensional hydrodynamic lattice comprised of millimetric droplets bouncing on the surface of a vibrating liquid bath. We derive the linearized equations of motion describing the dynamics of a generic Bravais lattice, as encompasses all possible tilings of parallelograms in an infinite plane-filling array. Focusing on square and triangular lattice geometries, we demonstrate that for relatively low driving accelerations of the bath, only a subset of inter-drop spacings exist for which stable lattices may be achieved. The range of stable spacings is prescribed by the structure of the underlying wavefield. As the driving acceleration is increased progressively, the initially stationary lattices destabilize into coherent oscillatory motion. Our analysis yields both the instability threshold and the wavevector and polarization of the most unstable vibrational mode. The non-Markovian nature of the droplet dynamics renders the stability analysis of the hydrodynamic lattice more rich and subtle than that of its solid state counterpart.more » « less
-
Abstract The field of low-temperature plasmas (LTPs) excels by virtue of its broad intellectual diversity, interdisciplinarity and range of applications. This great diversity also challenges researchers in communicating the outcomes of their investigations, as common practices and expectations for reporting vary widely in the many disciplines that either fall under the LTP umbrella or interact closely with LTP topics. These challenges encompass comparing measurements made in different laboratories, exchanging and sharing computer models, enabling reproducibility in experiments and computations using traceable and transparent methods and data, establishing metrics for reliability and in translating fundamental findings to practice. In this paper, we address these challenges from the perspective of LTP standards for measurements, diagnostics, computations, reporting and plasma sources. This discussion on standards, or recommended best practices, and in some cases suggestions for standards or best practices, has as the goal improving communication, reproducibility and transparency within the LTP field and fields allied with LTPs. This discussion also acknowledges that standards and best practices, either recommended or at some point enforced, are ultimately a matter of judgment. These standards and recommended practices should not limit innovation nor prevent research breakthroughs from having real-time impact. Ultimately, the goal of our research community is to advance the entire LTP field and the many applications it touches through a shared set of expectations.more » « less
-
null (Ed.)We present the results of a combined experimental and theoretical investigation of the stability of rings of millimetric droplets bouncing on the surface of a vibrating liquid bath. As the bath's vibrational acceleration is increased progressively, droplet rings are found to destabilize into a rich variety of dynamical states including steady rotational motion, periodic radial or azimuthal oscillations and azimuthal travelling waves. The instability observed is dependent on the ring's initial radius and drop number, and whether the drops are bouncing in- or out-of-phase relative to their neighbours. As the vibrational acceleration is further increased, more exotic dynamics emerges, including quasi-periodic motion and rearrangement into regular polygonal structures. Linear stability analysis and simulation of the rings based on the theoretical model of Couchman et al. ( J. Fluid Mech. , vol. 871, 2019, pp. 212–243) largely reproduce the observed behaviour. We demonstrate that the wave amplitude beneath each drop has a significant influence on the stability of the multi-droplet structures: the system seeks to minimize the mean wave amplitude beneath the drops at impact. Our work provides insight into the complex interactions and collective motions that arise in bouncing-droplet aggregates.more » « less
-
We present the results of an integrated experimental and theoretical investigation of the vertical motion of millimetric droplets bouncing on a vibrating fluid bath. We characterize experimentally the dependence of the phase of impact and contact force between a drop and the bath on the drop’s size and the bath’s vibrational acceleration. This characterization guides the development of a new theoretical model for the coupling between a drop’s vertical and horizontal motion. Our model allows us to relax the assumption of constant impact phase made in models based on the time-averaged trajectory equation of Moláček and Bush ( J. Fluid Mech. , vol. 727, 2013b, pp. 612–647) and obtain a robust horizontal trajectory equation for a bouncing drop that accounts for modulations in the drop’s vertical dynamics as may arise when it interacts with boundaries or other drops. We demonstrate that such modulations have a critical influence on the stability and dynamics of interacting droplet pairs. As the bath’s vibrational acceleration is increased progressively, initially stationary pairs destabilize into a variety of dynamical states including rectilinear oscillations, circular orbits and side-by-side promenading motion. The theoretical predictions of our variable-impact-phase model rationalize our observations and underscore the critical importance of accounting for variability in the vertical motion when modelling droplet–droplet interactions.more » « less
An official website of the United States government
